Asymptotic expansions of the $k$ nearest neighbor risk
نویسندگان
چکیده
منابع مشابه
Drought Monitoring and Prediction using K-Nearest Neighbor Algorithm
Drought is a climate phenomenon which might occur in any climate condition and all regions on the earth. Effective drought management depends on the application of appropriate drought indices. Drought indices are variables which are used to detect and characterize drought conditions. In this study, it was tried to predict drought occurrence, based on the standard precipitation index (SPI), usin...
متن کاملFast Approximate Nearest-Neighbor Search with k-Nearest Neighbor Graph
We introduce a new nearest neighbor search algorithm. The algorithm builds a nearest neighbor graph in an offline phase and when queried with a new point, performs hill-climbing starting from a randomly sampled node of the graph. We provide theoretical guarantees for the accuracy and the computational complexity and empirically show the effectiveness of this algorithm.
متن کاملUnsupervised K-Nearest Neighbor Regression
In many scientific disciplines structures in highdimensional data have to be found, e.g., in stellar spectra, in genome data, or in face recognition tasks. In this work we present a novel approach to non-linear dimensionality reduction. It is based on fitting K-nearest neighbor regression to the unsupervised regression framework for learning of low-dimensional manifolds. Similar to related appr...
متن کاملPercolation in the k-nearest neighbor graph
Let P be a Poisson process of intensity one in R2. For a fixed integer k, join every point of P to its k nearest neighbors, creating a directed random geometric graph ~ Gk(R). We prove bounds on the values of k that, almost surely, result in an infinite connected component in ~ Gk(R) for various definitions of “component”. We also give high confidence results for the exact values of k needed. I...
متن کاملAsymptotic derivation of the finite - sample risk of the k nearest neighbor classifier ∗ ( Technical Report UVM – CS – 1998 – 0101 )
The finite-sample risk of the k nearest neighbor classifier that uses a weighted Lpmetric as a measure of class similarity is examined. For a family of classification problems with smooth distributions in Rn, an asymptotic expansion for the risk is obtained in decreasing fractional powers of the reference sample size. An analysis of the leading expansion coefficients reveals that the optimal we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Statistics
سال: 1998
ISSN: 0090-5364
DOI: 10.1214/aos/1024691080